K_{sp} Problems - Set I

1. Write an equilibrium reaction representing each of the following saturated solutions:

- (a) barium fluoride ⇔
- (b) magnesium hydroxide \Leftrightarrow
- 2. Write the solubility product expression (K_{Sp}) for the ionic compound $\mbox{A}_{\chi}\mbox{B}_{y}.$
- 3. What is meant by term molar solubility (s)?
- 4. Calculate the concentration of ions in the following saturated solutions:

(a) [I-] in Agl with
$$[Ag^+] = 9.1 \times 10^{-9}$$
. The K_{sp} of Agl is 8.3×10^{-17} . ([I-] = 9.1×10^{-9} M)

(b)
$$[AI^{3+}]$$
 in $AI(OH)_3$ with $[OH^-] = 2.9 \times 10^{-9} M$. (answer $[AI^{3+}] = 9.7 \times 10^{-10} M$)

5. The molar solubility of $Zn(OH)_2$ is 1.67 x 10⁻⁵, what is its K_{sp} value ? Start by writing an equilibrium equation that represents a saturated solution of zinc hydroxide. (1.86x10⁻¹⁴)

6. If a saturated solution of zinc hydroxide has $[OH^{-1}] = 0.02 \text{ M}$, what is the concentration of the zinc ion? (4.65x10⁻¹¹M)

7. The molar solubility of calcium carbonate (CaCO₃) in pure water is 6.9×10^{-5} M. What is the K_{sp}? (4.8×10^{-9})

8. If [Pb2+] = 0.0012M in a saturated solution of lead(II) iodide, calculate the Ksp. $(6.9x10^{-9})$

9. Given that the Ksp of silver chloride (AgCl) is 1.7x10⁻¹⁰, calculate its molar solubility in pure water. (1.3x10⁻⁵M)

10. Lead(II) chloride (PbCl₂), with a Ksp of 1.6x10⁻⁵, is among the more soluble of the salts considered "insoluble". What is its molar solubility in pure water? (0.016M)

11. The molar solubility (s) of silver sulfide, Ag_2S , is 1.14 x 10 ⁻¹⁷ mol/L. What is the K_{sp} of Ag_2S ? (5.9x10⁻⁵¹)

 12. 100 liters of saturated cadmium sulfide, CdS, is evaporated to dryness. How many grams of solid CdS can be recovered upon evaporation? The K_{Sp} of CdS is 8.0x10⁻²⁸. (4.09x10⁻¹⁰ g)

13. The solubility of an ionic compound M_2X_3 (molar mass = 288g) is 3.6×10^{-17} g/L. What is the K_{sp} for the compound? (3.29×10^{-93})